Skip to main content

PRESTRESSED CONCRETE PART 4

 


Definition of terms

Strand: is the high tension cable (typically more than 4 times the strength of rebar)
Tendon: agroup of strands (can be one for unbonded but it’s multiple strands inside a duct for bonded system)
Duct: a galvanized or HDPE that separates the concrete from the strand

PRESTRESSED CONCRETE PART 4

Issues associated with PT

  • Restrain to shortening: this needs a special consideration for pouring sequence and connection detailing
  • Relaxation of strand: this can be avoided with a use of low relaxation strands

Design of Post tension members

The design of post tension elements needs a sound engineering knowledge and field skill, the amount of force applied to a single strand with a diameter of 12.7mm is about 15Ton (this is more than the weight of 7 Toyota Corollas). One can imagine how dangerous it can get if either the design or site execution are not properly done. That’s why all countries (at least the countries I am aware of) requires a specialized contractor who can do the design, execute the job and take the liability; no consulting office, no mater how big they are, are not allowed to do a PT design (this actually goes to structural steel, pile, shoring … as well)

The design of PT elements involve three steps: these are load balancing (equivalent load), service design and ultimate load design. Even though PT was developed more than a century ago and has been on practice for over 70years, only few schools teach the subject either in US or Europe. That can be attributed the amount of work require to reach to a safe, and economical design, what I mean by that is two engineers can have completely deferent designs results for a simple beam or slab.

For example, if a person calculates a required steel beam size of 305x127x42 but decide to use a size 356x171x45, that beam memeber is still safe, even though it might not be the most economical. But in case of PT, a beam with 12 strands can be safe but the same beam with 20 strand might not be safe. In short term more strand does not mean safe, that makes the design of any pt members trickier and as for me enjoyable

Comments

Popular post

What is Slump Test of Concrete-Cone Test Procedure | Workability of Concrete

Slump Test of Concrete-Cone Test Procedure | Workability of Concrete Slump test procedure is to determine the workability of concrete. One of the major problems that you had faced in your field work is concrete compaction during mixing.After mix design, you may have doubt, is this design will be ok? Yes, your design willl be ok in terms of strenght point of view of concrete.But the main problem arises when the mixing of fresh concrete, the compaction of fresh concrete will be very tough.In this situation, you can add some plasticizers without affecting your water-cement ratio or cement-aggregate ratio. Before adding plasticizers or superplasticizers to your fresh concrete, you need to check the workability of your concrete.The slump test is used for checking the workability of concrete.Let us check how can we do slump test of fresh concrete. Apparatus used for cone test procedure 1)Measuring scale 2)Tamping rod 3)Base plate 4)Nonporous base plate 5)Mould for slump test. ...

WHAT ARE THE DESIGN PROCEDURES FOR A BUILDING FOUNDATION?

  DESIGN PROCEDURES FOR A BUILDING FOUNDATION 1. DECIDE THE LOCATION OF COLUMNS & FOUNDATION AND TYPE OF LOADS ACTING ON THEM.(E.X DEAL LOAD,  LIVE LOAD OR WIND LOAD) 2. ESTIMATE ALLOWABLE BEARING PRESSURE OF SOIL USING GROUND INVESTIGATION REPORT. 3. DECIDE DEPTH OF FOUNDATION 4. CALCULATE FOUNDATION AREA 5. DETERMINE VARIATION IN VERTICAL STRESSES 6. CALCULATE SETTLEMENT 7. COST CONTROL 8. CONSIDER TIME 9. VARIATION IN GROUND CONDITION 1. DECIDE THE LOCATION OF COLUMNS & FOUNDATION AND TYPE OF LOADS ACTING ON THEM.(E.X DEAL LOAD,  LIVE LOAD OR WIND LOAD) On the building plan, the position of columns and load bearing walls should be marked, and any other induced loading and bending moments. The loads should be classified into dead, imposed and wind loading, giving the appropriate partial safety factors for these loads. 2. ESTIMATE ALLOWABLE BEARING PRESSURE OF SOIL USING GROUND INVESTIGATION REPORT. From a study of the site ground investigation (if available), th...

What’s the difference between m20 and c20 grade concrete?

 A concrete of Grade C20 means that the concrete will have a compression resistance of 20 N/mm² per square millimeter in 28 days. Proportion for grade C20. C20 is 1:2:4 (1 part cement, 2 parts fine aggregate, and 4 parts coarse aggregate.) where as C20 symbolizes a Cylindrical sample in which cement, fine aggregates, coarse aggregates are mixed in such a ratio that its characteristic compressive strength is 20 N/mm² after 28 days of curing. Fig:- Concrete specimen for testing Generally Strength of Cylinder sample= 0.8 x Strength of Cube. example:- M20 is equivalent to C25 M20 means the grade of concrete is defined as the minimum strength of concrete after 28 days. For the M20 Grade of concrete, The letter ‘M’ refers to the mix, and 20 represents the characteristic strength of concrete in MPa or N/mm². The specified characteristic strength of concrete is determined for 150mm size cube at 28 days. The Characteristic Compressive strength of concrete is defined as the strength of conc...

Different methods of road construction in civil engineering

Different methods of road construction in civil engineering 1) Concrete: It is a common option for road construction purposes as they are a solid material and can be used for building walls and local roads. This method is considerably less prone to wear and tear defects like rutting, cracking, stripping loss of texture, and potholes. This is the main reason for its wide usage. 2) Asphalt: This method of construction replacing concrete method in these days. They are very durable, water-resistant and can go more longer then the concrete. The major advantage of asphalt over concrete is its price. Concrete is very expensive as compared to asphalt. Moreover, asphalt includes low noise during pavement and it is easy to handle it for repairing and maintenance. That is why it is widely accepted and used by the people for the purpose of pavement surfacing. 3) Composite: This method is widely used for the maintenance, recycling, and rehabilitation of the roads. The composite m...

Design Requirement of reinforced Concentrate slab

Table  Content 1 Effective span for concentrate slab design 2 Limiting stiffness 3 Minimum reinforcement 4 Maximum diameter of bar 5 Distribution reinforcement concentrate for slab design 6 Cover to reinforcement Let discuss briefly '''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 1. Effective Span for concrete slab design For simply supported slab Minimum of clear span plus effective depth of slab Center to center...

#4 Basic Factors Why Concentrate Cracks?

  WHAT IS CONCRETE : Concrete is a building material which made from mixture of cement , sand ,crush or gravel and water. and we poured this mixture in the form work which can give us the different shapes of element like stone which is too mush strong. WHY CONCRETE CRACKS : 1: Excess of water in concrete 2: Improper Compaction of concrete 3: Rapid drying of concrete 4: Temperature Variation 1: EXCESS OF WATER IN CONCRETE Concrete does not required much water to get maximum strength . we required limit water in concrete to achieve the maximum strength of concrete . when we increase the water in concrete so it can lose the strength , so therefore concrete can crack. water is just reducing in concrete to make workabality of concrete . so increasing of water can reduce the strength of concrete. 2: IMPROPER COMPACTION OF CONCRETE before placing concrete we have to proper compact the soil. and after that when we placed concrete so concrete should be compacted properly . when the con...

What Is Splicing of Reinforcement Bars?,Rebar Formula and Brief Example

 What Is Splicing of Reinforcement Bars? 🏷Splicing of reinforcement bars, commonly known as rebars, refers to the process of connecting two or more rebars in a reinforced concrete structure to ensure a continuous and load-resistant structure. 🚧It is a critical practice in construction to transfer the stresses from one bar to another effectively, maintaining structural integrity. 💫Methods of Splicing Reinforcement Bars There are three primary methods of splicing reinforcement bars: ❇️1. Lap Splice A lap splice is the most widely used method in reinforced concrete structures. In this technique, two rebars are overlapped and tied together using binding wires. The overlap length, also known as the lap length, is crucial for ensuring the splice’s strength. ⏺It is determined based on factors such as: • The diameter of the rebars. • The grade of concrete. • The specific application of the structure. ▶️The lap splice is easy to implement and cost-effective but may require additional con...